リモートモニタリングやウェアラブルデバイス、センサの臨床試験への活用。
BYOD promises greater patient-centricity by enabling patients to conduct assessments using the convenience and familiarity of their own hardware devices.
Wearable devices and sensors offer great potential in the collection of richer data and insights to enhance our understanding of the effects of treatment. They enable the collection of objective measures of intervention effects both in-clinic and in remote free-living settings. However, implementing wearables and sensors brings new challenges to clinical trial conduct, data management and interpretation.
Our ICON Insights will help you to understand and successfully address the complexities of implementation of wearable devices in trial design, execution and reporting.
Sleep quality and quantity have clinical relevance in Alzheimer's disease. Review the use of wearables in Alzheimer’s disease to provide objective measures of sleep and activity patterns that are not subject to patient recall bias.
Management wearables and data in a global trials
ICON’s eCOA team and wearables consultants design, implement and manage a technology solution for a global trial across nine countries amongst patients suffering from a neurological disorder
Developing and validating endpoints derived from wearables data
ICON uses AI machine learning algorithms to develop new digital biomarkers from raw accelerometer data.
Leveraging technology to conduct a study in a decentralised care setting
ICON uses Apple Research Kit to deliver an electronic patient reported outcomes instrument using an iPad and a wrist wearable, amongst elderly patients.
Approaches to leveraging mobile, wearable and shareable technology in observational research
Article: Scrip Bring Your Own Device ePRO: Hold the relish, or no holds barred?
The Use of Digital Technologies to Collect Patient Data in Outcomes Research
Recommendations on standard approaches for wearable selection, implementation, and derived endpoints to measure changes in activity.
Learn how to measure treatment related changes in sedentary behaviour using wearable technology.