Digital Disruption

Technologies that accelerate and improve clinical trials

Clinical strategies to optimise software as a medical device (SaMD) for treating mental health

Mental health disorders affect millions, and with increasing diagnoses, the demand for new, accessible treatments is growing. In this whitepaper, we examine how SaMD, particularly through digital therapeutics, is providing new solutions for mental health management.

Read the whitepaper

The triad of trust: Navigating real-world healthcare data integration

Our whitepaper delves into the critical need for organisations to develop robust frameworks for integrating this data seamlessly while upholding patient privacy and compliance standards.

Read the whitepaper

The role of digital therapeutics in central nervous system clinical trials

In this article, ICON's Louisa Steinberg and Maureen Glynn consider the role of digital therapeutics in the treatment of central nervous system conditions and how they can be used to improve clinical trials.

Read the article

AI In Clinical Research: Now And Beyond

In this piece from Forbes, Dr. Greg Licholai, Chief Medical and Chief Innovation Officer talks about recent developments, regulatory considerations, and the promising future of AI in clinical research are reshaping the landscape of drug development and patient care.

Read the article

A mind for digital therapeutics: Considerations for DTx clinical trials in CNS indications

DTx deliver evidence-based therapeutic intervention using software to prevent, manage, or treat medical disorders or disease. Because of the evidence-based nature of DTx, in many cases a clinical trial is required to demonstrate safety and efficacy. However, since such therapeutics are relatively new, there are many aspects to these clinical trials that differ from trials for traditional therapeutics, and which sponsors will need to consider.

Read the whitepaper

Clinical Trial Tokenisation

Powerful insights for successful outcomes

Tokenisation enables sponsors to link participant information in a blinded and encrypted way for better intelligence on health care outcomes. 

Read more

Clinical trial data anonymisation and data sharing

In this whitepaper, we discuss our approach to data anonymisation, including risk assessment, dataset validation considerations and a comparison between two processes for data de-identification.

Download the whitepaper

Closing the evidence gap:

Digital health technologies and drug reimbursement

As digital health technologies (DHTs) or "wearables" continue to advance, there are key considerations for drug sponsors to consider to ensure that the data generated by DHTs are acceptable to payers.

Read the whitepaper

Whitepaper: Wearables and digital endpoint strategy and validation

Although mHealth devices and sensors are continuing to evolve, and it is now possible to capture a vast array of physiological data, the operationalization of digital trial is not without challenges. In this whitepaper we discuss a framework for integrating digital health effectively and efficiently:

  • Explore the significance of digital endpoints including digital biomarkers
  • Build a case for the broader adoption of digital health technologies and digital endpoints
  • Outline a strategy to best harness these innovations with an end-to-end framework to selecting and validating devices and endpoints
  • Provide checklists for device selection and data strategy
  • Consider the digital health technologies implications of the COVID-19 pandemic
  • Demonstrate their future potential and impact on R&D

Watch related webinar recording

Read the whitepaper

How will US payers evaluate and manage digital therapeutics?

Digital health innovations can help people better manage chronic diseases and access healthcare when they need it, improving adherence to medications and preventing complications. Our whitepaper provides an introduction and review of digital health and the current regulatory landscape, with a focus on how various US payers perceive these new innovations. Our original research uncovers how US payer organizations currently evaluate and manage digital therapeutics, and their perspectives for the future. 

Read the whitepaper

Reimagining Patient-Centricity with the Internet of Medical Things (IoMT)

In our latest whitepaper, we follow a theoretical patient through the entire clinical trial journey – from initial contact for an early study through transition to treatment with an approved product. At each stage, we explore how IoMT can increase clinical development programme efficiency by reducing the burden on patients, caregivers, pharma companies and medical device and diagnostic manufacturers.

Read the whitepaper

How digital technologies will transform R&D productivity

Emerging digital technologies, such as artificial intelligence (AI), robotic process automation (RPA), blockchain and quantum computing, offer significant opportunities to improve R&D productivity.

Infographic: Digital technologies have the potential to reverse declining ROI in pharma R&D (PDF)

Blog: Harnessing Big Data: The raw material of digital transformation

Blog: Top five digital technologies set to transform pharma R&D

Blog: Pharma ROI restoration

Media article: How healthcare can develop through digital innovation

Read the whitepaper

The impact of artificial intelligence on outcomes based contracting

In the United States outcomes-based contracting (OBC) as a pricing model has long been proposed as a measure to reward innovation, based on actual performance of treatments and interventions in patient populations. However, the perceived and actual challenges in implementation have prevented many innovative contracts from leaving the drafting table. There are a number of ways AI could help to overcome these challenges.

Read the whitepaper

Personalising Digital Health

How to develop and deploy novel technologies to reduce patient burden and increase engagement

Incorporating Digital Health technologies into clinical trial designs has the potential to address many clinical trial challenges, including patient retention and engagement. Furthermore, advancing novel technologies such as AI and machine learning are allowing for richer data generation and collection, driving insights for making better drug and medical device development decisions sooner. In addition to clinical research, Digital Health is increasing the efficacy of therapies in the real world through continuous monitoring, telemedicine and prescription digital therapeutics to help patients better manage their conditions.

Infographic: 5 Steps to successfully incorporate digital health in clinical trials

Blog: Precision medicine

Read the whitepaper

Digital Health Ecosystem

New technologies are enhancing the efficiency and scope of clinical trials through:

  • Big data and predictive analytics which enable quick identification of promising study subjects and sites
  • Artificial intelligence (AI) processing large amounts of data to help guide patient management and protocol design
  • Electronic health records increasing data collection reach and efficiency, and help better integrate trials into clinical practice
  • Patient-focused technologies, such as mobile sensors and smartphone apps

The surge of digital health technologies modernising clinical research

How patients and developers benefit in a digital health ecosystem

New frontiers for the next generation of clinical trials

The future of automation and digital transformation in late phase research

How the Internet of Medical Things (IoMT) is evolving the role of the patient

 

How to implement successful digital clinical trials

mHealth device technology has evolved to the point where it is now possible to collect a vast array of physiological data, sleep and activity data, and use advanced analytics to monitor patients in their own home outside of the hospital environment. However the penetration and use of wearables and devices in the pharmaceutical industry is still limited.

In this article, jointly authored by ICON and Intel, we discuss industry concerns about implementation of this technology in a clinical trial. These concerns focus on a number of key areas: Patient Acceptance, Device Suitability, Data Complexity and Insight Generation, Operationalisation, Privacy and Security Issues, and Regulatory Acceptance.

Key considerations for achieving digital trial success 

Watch webinar recording now

The impact of disruptive innovation

Disruptive innovation is evolving and presenting real solutions but in order to adapt to the emergence of this innovation, companies will need to be more agile and open to learning and dealing with the impact. The barriers of disruptive innovation are forcing pharmaceutical companies and their partners to reshape how they look at everything they do across the entire spectrum of drug development.

Read the views of three Senior Pharma Executives on how their organisations are approaching innovation.

Read the report

Latest on mHealth, Wearables and AI

If you would like to receive our Digital Disruption email updates, including the latest on mHealth and wearables, as well as AI and predictive informatics, click here to go to our preference centre

Receive Digital Disruption email updates

Real World Data

Late phase research is undergoing rapid transformation due to the impact of healthcare digitalisation and access to ​Real World Data

With the right technology infrastructure and support, sponsors can more completely leverage RWE across the enterprise for maximum value. 

Read our white paper: “On a technology-enabled collision course: clinical research meets clinical practice through Real World Evidence

RWD and Alzheimer's

RWD such as sleep quality and quantity have clinical relevance in Alzheimer's disease. Review the use of wearables in Alzheimer’s disease to provide objective measures of sleep and activity patterns that are not subject to patient recall bias.

Meeting evidentiary needs with EHRs

RWD-powered, post-marketing studies require fewer resources and EHRs are an efficient data source to support observational studies. Real World Data from Electronic Health Records can enhance your late phase research studies while decreasing study costs.

Read the whitepaper

Cybersecurity in Medical Devices

Cybersecurity vulnerabilities can emerge in any medical device that is or can be connected to another electronic device and/or network, resulting in potential harm to patients or financial loss for providers, posing major challenges for medical device manufacturers.

Checklist: View the cybersecurity checklist to see how well you're prepared.

Blog: How can manufacturers improve responses to medical device cybersecurity vulnerabilities?

Blog: Five cybersecurity threats for medical device manufacturers

mHealth & Wearables

Wearable devices and sensors offer great potential in the collection of richer data and insights to enhance our understanding of the effects of treatment. However, implementing wearables and sensors brings new challenges to clinical trial conduct, data management and interpretation.

BYOD promises greater patient-centricity by enabling patients to conduct assessments using the convenience and familiarity of their own hardware devices. 

Harnessing blockchain technology and digital disruption

Blockchain technology allows for complete transparency of data, which has immense potential within clinical trials. Blockchain ledgers allow for user confidentiality, so patient privacy can be protected during exchange of data between parties - patient data is the most notable item of transactional nature between networks such as healthcare institutions, patients, and regulators.

Blockchain featured as a disruptive digital technology in our whitepaper 'Digital Disruption in Biopharma' with potential to improve pharma R&D productivity.

What’s happening in ICON

Citeline Awards 2024

ICON was recognised for Excellence in Use of Real-World Data/Evidence at the Citeline Awards 2024, for its AI solution Cassandra.

The judges noted that “powered by real world data and evidence and AI, ICON developed an innovative and pragmatic system to help trial sponsors predict future post-marketing regulatory requirements and develop strategies to mitigate or eliminate those requirements early-on in their programs”.