Skip to main content
Home
  • Solutions
    Clinical solutions
    Blended Solutions Cardiac Safety Solutions Clinical & Scientific Operations Decentralised Clinical Trials Early Clinical Laboratories Medical Imaging Site & Patient Solutions Strategic Solutions
    Consulting & Commercial
    Asset Development Consulting Commercial Positioning Language Services Outcome Measures Real World Intelligence Regulatory Affairs Symphony Health data
    meeting
    Case studies

    Reducing time to market, delivering on quality, providing deep therapeutic expertise and enhancing R&D ROI.

    Innovative research tools showcase
    Technologies

    Technology solutions from early phase through to post-marketing.

  • Sectors
    Sectors

    ICON provides its full range of clinical, consulting and commercial services across several industry sectors.

    Read more
    Biotech Government and Public Health Medical Device Pharmaceuticals
    Biotechnology services navigation panel
    Biotech

    Developing transformative therapies requires a flexible approach.

    Employee engagement program overview
    ICON and You

    Partners making a difference.

  • Therapeutics
    Therapeutics
    Cardiovascular Central Nervous System Endocrine & Metabolic Disorders Hepatology Infectious Diseases Internal Medicine & Immunology Oncology
    Cross-therapeutics
    Biosimilars Cell and Gene Therapies Medical Device Pediatrics Rare & Orphan Diseases Vaccines Women's Health
    Obesity 2025 insights image
    Obesity

    A focus on combination therapies requires appropriate obesity-specific trial designs, long-term follow-up studies and diverse patient recruitment.

    Biological research visual element
    Therapeutics insights

    ICON's therapeutic experts contribute regularly to industry publications and the creation of thought leadership content. Read more.

  • Insights
    Insights
    Digital Disruption Patient Centricity Regulatory Intelligence Therapeutics insights Transforming Trials Value Based Healthcare Blog Videos Webinar Channel
    banners
    From bottlenecks to breakthroughs

    Human-centred strategies for faster study starts

    More than monitoring whitepaper
    More than monitoring

    How modern monitoring paradigms impact CRA roles

    digital globe network with icons
    Meeting requirements for Joint Clinical Assessments

    A planning guide for health technology developers

  • News & Events
    News & Events

    ICON regularly contributes thought leadership to industry media publications and conferences, and has been recognised as one of the world’s leading Contract Research Organisations through a number of high-profile industry awards.

    Read more
    Press releases In the News Mediakit Awards Events Webinars Social media
    webinar
    When patients lead: Breaking barriers in ultra-rare disease drug development

    3 March 2026. Register today.

    brain
    Boosting clinical trial success in Alzheimer’s, Parkinson’s and other neurodegenerative diseases

    Watch the webinar.

  • About ICON
    About ICON
    Company history ICON at a glance ICON in Asia Pacific ICON in Latin America Leadership Quality
    ICON for
    Patients Volunteers Investigators Jobs & Careers Investors Suppliers
    Responsible business practice indicators
    Sustainability, charity, inclusion and belonging

    ICON Cares is our commitment to making a positive impact on our people, environment and our community.

    Modern reception area at Dublin office
    ICON at a glance

    Delivering successful outcomes across the clinical development lifecycle.

  • Careers
  • Investors
  • Contact
  • 日本語
  • 简体中文
  1. Home
  2. Insights
  3. Blog
  4. Leveraging in-home services for Parkinson’s Disease

Leveraging in-home services for Parkinson’s Disease

Page tools
Share Share
Facebook

Share on Facebook

Facebook

Share on X

Facebook

Share on Linkedin

Bluesky

Share on Bluesky

Parkinson’s disease is the second most common neurodegenerative disorder next to Alzheimer’s.1

There are approximately one million people in the United States and 10 million people worldwide living with the disease. Moreover, this progressive degenerative disorder usually manifests after 50 years of age — although, about 10 percent of the cases are detected before age 50.2

The typical motor impairments associated with Parkinson’s —namely bradykinesia (slow initiated voluntary movements), muscular rigidity, resting tremor and postural issues3,4 — result from the degenerative loss of dopamine-producing cells in the midbrain.1,5 In fact, more than 60 percent of these cells are lost before the onset of physical symptoms.5

Presently, drugs that substitute dopamine levels in the brain, such as levodopa and dopamine-agonists, are most commonly prescribed to manage the symptoms of Parkinson’s. Nevertheless, these drugs do not mitigate the progression of the disease.6,7 Alternative therapies have also been studied, including transcranial or deep brain stimulation, the restorative implantation of stem cells and disease-modifying therapies which reduce the amount of potentially neurotoxic protein aggregates, the alpha- synuclein. Also home-based exercises designed to help individuals to cope with the disease are evaluated in trials.

Effectively evaluating these alternative interventions depends on patient participation in the clinical trials. However, these trials have logistical challenges related to recruitment and trial retention, which are directly affected by the disease. For example, those with more progressed forms of Parkinson’s will have trouble participating because of limited mobility to travel to clinics, even though alone in the US, multiple ten-thousands of patients with PD are registered in the Michael J Fox Foundation’s trial registry and waiting for an option to participate in a study. Ensuring these patients’ have access to trials calls for steps that allow them to effectively participate at home. Therefore, expanding in-home services could help in Parkinson’s disease research, overall, by increasing participation and retention in clinical trials.

Why in-home services are increasingly important

In-home services gained more momentum with the onset of the COVID-19 pandemic, forcing clinical trials to adapt because of concerns over vulnerable populations contracting the virus as well as limited access to sites. Some patients involved in clinical trials are elderly and/or may have compromised immune systems — which is especially true in Parkinson’s disease trials. For this reason, many potential patients have opted not to participate, causing these trials to come to a halt because of the logistical hurdles.

However, such hurdles must be addressed to keep studies running. If the participant cannot get to a clinical site due to either health issues or inconvenience, there needs to be an efficient way for the study to come to the patient. This could include using decentralised trials and/or providing in-home services either through telemedicine or by having a healthcare professional physically come to the participant’s home to collect biological samples, to check vitals or to help the participant in another manner related to the study. This would increase study compliance and keep participants safe and engaged during the pandemic and beyond.

Study reveals what clinical trial participants really want

Patients have consistently rated alternative access to clinical trials favorably. An ICON survey of 3,800 patients between the ages of 18 to 75+ — with most being above 55 years of age — revealed that clinical study participants want more options. Specifically, when asked where they would prefer a study to take place, the majority selected a combination of study site and either telemedicine or in-home services. Interestingly, a majority said they would participate in a clinical trial if all visits were done virtually. Finally, 72 percent were more willing to participate using technology, such as wearables and mobile devices, in addition to patient diaries.

Location seemed to be a key factor in determining participation. Only 10 percent of those surveyed said that they would travel one hour or more to participate in a clinical trial. A majority, (59 percent) said they were more willing to be part of a clinical trial if logistical support were given. Therefore, the key is to make it easy for participants and sponsors to connect either at the participant’s location or at a clinical site conveniently located.

Changing how clinical services are provided

As more Parkinson’s disease studies use alternative therapeutic strategies that require additional involvement from the patient, researchers need to start thinking beyond traditional on-site clinical participation. Specifically disease-modifying and restorative concepts often require  longer periods of patient involvement, up to several years. Taking advantage of technologies, such as wearables and mobile devices, to provide instruction and collect data can make this possible.

Also, providing in-home services by a healthcare professional makes it easier for participants to stay engaged and can increase the depth and breadth of the study by including individuals who would not typically be able to participate through traditional on-site means. In the end, in-home clinical services offer a solution to some of the major challenges faced by Parkinson’s disease trials including patient mobility impacting travel/access to sites.

For more information about how In-home Services can help your clinical trial, please visit ICON’s in-home services website.

CNS, pain and ageing related disorders insights

ICON's experienced neuroscience and drug development teams regularly share their insights in industry publications and through ICON produced content in the form of blogs and whitepapers. Read more content from our experts.

Read more

Sources

  1. Alexander, Garrett E., Biology of Parkinson’s Disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder, Dialogues Clin Neurosci. 2004 Sep; 6(3): 259–280.
  2. Marras, C., et al., Prevalence of Parkinson’s disease across North America. npj Parkinson's Disease, 2018. 4(1): p. 21.
  3. Hughes, A.J., et al., Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. Journal of neurology, neurosurgery, and psychiatry, 1992. 55(3): p. 181-184.
  4. Sveinbjornsdottir, S., The clinical symptoms of Parkinson's disease. Journal of Neurochemistry, 2016. 139(S1): p. 318-324.
  5. German, D.C., et al., Midbrain dopaminergic cell loss in Parkinson's disease: computer visualization. 1989(0364-5134 (Print)).
  6. Müller, T., Dopaminergic substitution in Parkinson's disease. 2002(1465-6566 (Print)).
  7. Lees, A., Alternatives to levodopa in the initial treatment of early Parkinson's disease. 2005(1170-229X (Print)).
In this section
In this section
  • Digital Disruption
    • Clinical strategies to optimise SaMD for treating mental health
    • Digital Disruption: Surveying the industry's evolving landscape
    • AI and clinical trials
      • Impact of AI on Outcomes Based Contracting
      • Using AI for site ID and selection
      • Applying AI to manage the risks and costs of postmarketing requirements
      • Integrating AI into Clinical Research: How AI is Enhancing Clinical Development
    • Clinical trial data anonymisation and data sharing
    • Clinical Trial Tokenisation
    • Closing the evidence gap: The value of digital health technologies in supporting drug reimbursement decisions
    • mHealth wearables
      • Cybersecurity
      • Digital Endpoints
    • Personalising Digital Health
    • Real World Data
      • Harnessing technology to maximise Real World Evidence value
      • Meeting Evidentiary Needs with EHRs
      • Post-Market Surveillance for Medical Devices
    • The triad of trust: Navigating real-world healthcare data integration
    • Decoding AI in software as a medical device (SaMD)
    • Software as a medical device (SaMD)
      • Developing AI in SaMD
  • Patient Centricity
    • Accelerating clinical development through DHTs
    • Agile Clinical Monitoring
    • Capturing the voice of the patient in clinical trials
    • Charting the Managed Access Program Landscape
    • Representation and inclusion in clinical trials
      • Diversity and inclusion in clinical trials whitepaper
    • Exploring the patient perspective from different angles
    • Patient safety and pharmacovigilance
      • A guide to safety data migrations
      • Taking safety reporting to the next level with automation
      • Outsourced Pharmacovigilance Affiliate Solution
      • The evolution of the Pharmacovigilance System Master File: Benefits, challenges, and opportunities
      • Sponsor and CRO pharmacovigilance and safety alliances
      • Understanding the Periodic Benefit-Risk Evaluation Report
    • Patient voice survey
    • Patient Voice Survey - Decentralised and Hybrid Trials
    • Reimagining Patient-Centricity with the Internet of Medical Things (IoMT)
    • Using longitudinal qualitative research to capture the patient voice
    • Prioritising patient-centred research for regulatory approval
  • Regulatory Intelligence
    • Accelerating access
    • Meeting requirements for Joint Clinical Assessments
    • Navigating the regulatory landscape in the US and Japan:
    • Preparing for ICH GCP E6(R3) implementation
    • An innovative approach to rare disease clinical development
    • EU Clinical Trials Regulation
      • EMA guideline on computerised systems and electronic data in clinical trials
      • EU CTR Whitepaper
    • Using innovative tools and lean writing processes to accelerate regulatory document writing
    • Current overview of data sharing within clinical trial transparency
    • Global Agency Meetings: A collaborative approach to drug development
    • Keeping the end in mind: key considerations for creating plain language summaries
    • Navigating orphan drug development from early phase to marketing authorisation
    • Procedural and regulatory know-how for China biotechs in the EU
    • RACE for Children Act
    • Early engagement and regulatory considerations for biotech
    • Regulatory Intelligence Newsletter
    • Requirements & strategy considerations within clinical trial transparency
    • Spotlight on regulatory reforms in China
    • Demystifying EU CTR, MDR and IVDR
    • Transfer of marketing authorisation
    • Exploring FDA guidance for modern Data Monitoring Committees
    • Streamlining dossier preparation
  • Therapeutics insights
    • Endocrine and Metabolic Disorders
    • Cardiovascular
      • Mitigating the impact of COVID-19 on cardiovascular trials
    • Cell and Gene Therapies
      • Approaching the CAR T-cell therapy horizon
      • Cell and Gene ebook
      • Long-term follow-up studies of cell and gene therapies
      • Mainstreaming Cell & Gene Therapies
    • Central Nervous System
      • A mind for digital therapeutics
      • Challenges and opportunities in traumatic brain injury clinical trials
      • Challenges and opportunities in Parkinson’s Disease clinical trials
      • Early, precise and efficient; the methods and technologies advancing Alzheimer’s and Parkinson’s R&D
      • Key Considerations in Chronic Pain Clinical Trials
      • ICON survey report: CNS therapeutic development
    • Glycomics
    • Infectious Diseases
      • Antimicrobial Resistance
      • Considerations for strengthening vaccine development
      • COVID-19 vaccine trials
      • COVID-19 vaccines: Post-authorisation safety surveillance
      • HIV
      • The value of dynamic transmission models
    • NASH
      • The voice of NASH investigators
    • Obesity
      • Addressing obesity's impact across the disease spectrum
      • Trends and challenges in obesity research and clinical trials
      • Obesity and beyond: embracing multi-indication potential during clinical development
      • Survey report: How today’s obesity developers are navigating a multi-indication landscape
    • Oncology
      • ICON survey report: Innovation in Oncology
      • De-risking clinical development of precision medicines in oncology
      • Advances in imaging biomarkers: Estimating drug efficacy with tumour growth rate modelling
      • The future of oncology biosimilars
    • Paediatrics
      • Paediatric Risk Assessment Map
    • Respiratory
    • Rare and orphan diseases
      • Advanced therapies for rare diseases
      • Cross-border enrollment of rare disease patients
      • Crossing the finish line: Why effective participation support strategy is critical to trial efficiency and success in rare diseases
      • Diversity, equity and inclusion in rare disease clinical trials
      • Identify and mitigate risks to rare disease clinical programmes
      • Leveraging historical data for use in rare disease trials
      • Natural history studies to improve drug development in rare diseases
      • Patient Centricity in Orphan Drug Development
      • The key to remarkable rare disease registries
      • Therapeutic spotlight: Precision medicine considerations in rare diseases
  • Transforming Trials
    • Accelerating biotech innovation from discovery to commercialisation
    • Demystifying the Systematic Literature Reviews
    • Ensuring the validity of clinical outcomes assessment (COA) data: The value of rater training
    • From bottlenecks to breakthroughs
    • Linguistic validation of Clinical Outcomes Assessments
    • More than monitoring
    • Optimising biotech funding
    • Adaptive clinical trials
      • Adaptive Design: The Faster Path to Market
    • Best practices to increase engagement with medical and scientific poster content
    • Decentralised clinical trials
      • Biopharma perspective: the promise of decentralised models and diversity in clinical trials
      • Decentralised and Hybrid clinical trials
      • Practical considerations in transitioning to hybrid or decentralised clinical trials
      • Navigating the regulatory labyrinth of technology in decentralised clinical trials
    • eCOA implementation
    • Blended solutions insights
      • Clinical trials in Japan: An enterprise growth and management strategy
      • How investments in supply of CRAs is better than competing with the demand for CRAs
      • The evolution of FSP: not just for large pharma
      • Embracing a blended operating model
      • Observations in outsourcing: Survey results show a blended future
    • Implications of COVID-19 on statistical design and analyses of clinical studies
    • Improving pharma R&D efficiency
    • Increasing Complexity and Declining ROI in Drug Development
    • Innovation in Clinical Trial Methodologies
    • Partnership insights
      • Exploring partnership culture and its impact on outsourcing and operational strategy
    • Risk Based Quality Management
    • Transforming the R&D Model to Sustain Growth
  • Value Based Healthcare
    • Strategies for commercialising oncology treatments for young adults
    • US payers and PROs
    • Accelerated early clinical manufacturing
    • Cardiovascular Medical Devices
    • CMS Part D Price Negotiations: Is your drug on the list?
    • COVID-19 navigating global market access
    • Ensuring scientific rigor in external control arms
    • Evidence Synthesis: A solution to sparse evidence, heterogeneous studies, and disconnected networks
    • Health technology assessment
    • Perspectives from US payers
    • ICER’s impact on payer decision making
    • Making Sense of the Biosimilars Market
    • Medical communications in early phase product development
    • Navigating the Challenges and Opportunities of Value Based Healthcare
    • Payer Reliance on ICER and Perceptions on Value Based Pricing
    • Payers Perspectives on Digital Therapeutics
    • Precision Medicine
    • RWE Generation Cross Sectional Studies and Medical Chart Review
    • Survey results: How to engage healthcare decision-makers
    • The affordability hurdle for gene therapies
    • The Role of ICER as an HTA Organisation
    • Integrating openness and precision for competitive advantage
  • Blog
  • Videos
  • Webinar Channel

Connect with us

  • Contact us
  • Submit proposal request
  • Update Email Preferences
  • Global office locator
  • ICON on social media
Site Branding
    ICON plc
  • Contact
  • About ICON
  • Results & Reports
For Clients
  • Therapeutics
  • Solutions
  • Insights
  • Technologies
  • Content preferences
  • Office locations
ICON for
  • Patients
  • Volunteers
  • Investigators
  • Jobs & Careers
  • Investors
  • Suppliers
News & Events
  • Press releases
  • Mediakit
  • Events
  • Webinars
Socials
  • Linkedin
  • Facebook
  • Instagram
  • Youtube

Legal Footer

  • © 2026 ICON plc
  • Disclaimer
  • Privacy & Data
  • Cookies
How can we help?
  • All
  • Website
Popular search terms:
  • Biotech
  • Cell and Gene Therapies
  • Consulting
  • Early Clinical
  • Medical Device
  • Oncology
  • Rare & Orphan Diseases
  • Real World Evidence
  • Site & Patient Recruitment
  • Strategic Solutions
  • Regulatory Intelligence